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Abs1rld-In this study a continuum theory is proposed which predicts the dynamic behavior of ther·
moelastic layered composites consisting of two alternating layers. In constructing the theory. it is noted that
the governing equations for a single layer. derived in Part I. hold in each phase of the layered composite.
The theory is completed by supplementing these equations with continuity conditions and using a
smoothing operation. The derivation of the continuity conditions is based on the assumption that the layers
are perfectly bonded at interfaces. To assess the theory. spectra from the exact and the derived theory are
compared for waves propagating in various directions of the composite. The match between the two is
excellent. For waves propagating normal to layering the theory predicts both the banded and periodic
structure of the spectra. The region of validity of the theory on the wave number·frequency plane can be
enlargened by increasing the orders of the theory and the continuity conditions.

INTRODUCTION
Due to its importance in many fields of engineering. the dynamic behavior of layered
composites has attracted the attention of many researchers. The exact treatment involves
writing the exact field equations in each phase of the composite and taking into account the
continuity conditions at the interfaces. Since this kind of treatment is complicated and cum­
bersome. researchers have attempted to develop theories in which the heterogeneous medium is
replaced by a homogeneous one. Some of such theories are effective modulus theory [1.2].
effective stiffness theory [3-5], effective dispersion theory [6]. mixture theory [7-9] and the
theory of interacting continua [10, II].

In this work, a new approximate theory is developed in a systematic manner using a new
procedure for thermoelastic, layered composites which consist of two alternating layers. The
new procedure permits us to take into account the continuity conditions at the interfaces
properly and to match the exact and approximate spectra very well without using matching
coefficients. The procedure starts by noting that the governing equations of a single layer
established in Part I [12] also hold in each phase of the composite. The theory is completed by
adding the continuity conditions to these equations and using a smoothing operation. The
continuity conditions are derived in a unified and systematic manner by taking advantage of the
fact that the face variables (which are displacements, stresses defined on the layer faces) appear
as field variables in the equations of a single layer, and using the assumption that the layers are
perfectly bonded. The continuity conditions thus obtained relate the face variables of two
different layers.

To assess the present approximate theory. waves propagating in various directions of the
layered composite are studied using various order theories and continuity conditions. As seen
from the figures, the fit between the dispersion curves predicted by the exact and this
approximate theory is excellent and is superior to those obtained by previous approximate
theories. The banded and periodic structure of the spectra of waves propagating normal to
layering is reproduced very well by the present approximate theory. The match between the
exact and approximate cut-off phase velocities as well as cut-off frequencies is very good. The
figures further indicate that the approximate theory is open to improvement in the sense that
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the region of the wave number-frequency plane over which the theory is valid can be enlarged
as desired by increasing the orders of the theory and continuity conditions.

THE APPROXIMATE EQUATIONS OFTHE LAYERED COMPOSITE

The layered composite under study is composed of two alternating layers perfectly bonded
at their interfaces. The two different layers are indicated by the circled numbers J and ~ in Fig.
I. The layers I and 2 are assumed to be made of a linear, isotropic, thermoelastic material and
have the material constants (p" J-LI' A" etc.) and (P2' J-L2, Az, etc.), and have the thicknesses 2h,
and 2h2 respectively. In the figure the pairs of the layers, each of which consists of two
different phases, are numbered in increasing order k =0, I, 2, etc. In Fig. I two kinds of
coordinate systems are shown. The first is the (x" X2, x]) global coordinate system whose (x,.
x]) plane is parallel to the midplanes of the layers. This coordinate system is employed to
designate the location of a layer by specifying the vertical distance of its midplane from the (x,.

x]) plane. For example, ~2(k) (ex = 1, 2) describes the position of the exth constituent of the kth
pair (see Fig. I). Here, a remark regarding the convention adopted throughout the study should
be made: the Greek letters ex, p, etc. are used only to distinguish the two different phases of the
composite and they take the values I and 2. Second coordinate system is the local coordinate

a

system (x" xz, x]) whose (x" Xl) plane is chosen to coincide with the midplane of a particular
layer.

The governing equations of the layered composite consist of two types of equations,
namely, the field equations, valid in each layer of the composite and the continuity conditions at
the interfaces. We note that the equations obtained in Part I [12] for a single layer hold also in
each layer of the composite. Accordingly we can obtain the field equations by putting the index
ex in each variable appearing in the equations of the single layer. They are

equations of motion:

where

a a a a u a

d!'rlj + dlT~j - T2j +R;" +/;" =PaUl" (n =0 - m), (I)

(2)

a
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[

a a a
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a a a

Rt = T2i+ T2i
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for odd n
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(t a a Q'
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Fig. I. Geometric description of the layered composite.
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energy equation:

where
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Fourier's equation:

aa
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'1"/11" +qt" =- katlf'

oa a Q ell

'I"Q3" +q3n =-kn38" (n =O-m),

and

00 0 CI a 0

'I"42"+q2"=-k(~"-e") (n=O-m),

where

1173

(8)

(9)
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additional equations:
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_~ ~~klt + ~~+B- For even n
k - 1.3.

a

(J'=

i ~~klt + ~~- 'ir for odd n
k=O.2.

i " " " a

c'~k(/' + c'~+ Ir for even n
a k=O,2,.
(J'=

f a " " "c'~k(/' + c'~-Ir for odd n,
k=1.3...

(2)

where p = m, p' = m - 1 for even m, p = m -1, p' = m for odd m; m: the order of the theory,
In eqns (I )-(2) it is assumed that the same distribution functions ~" are used for both of the
phases. The dot denotes the differentiation with respect to time t and OJ = (a/ OXj). It is assumed
that the summation convention does not apply to Greek indices. The definitions of the variables
and constants appearing in eqns (1)-(12) can be found from those given in Part 1 by putting the
index a on each term of the equations of the single layer. When the ~" are Legendre

a a a a

polynomials the values of 'Yk, i\ C~k' c~"', c'~k, c'~'" in eqns (II), (12) can be obtained from Table 1
of [12] by replacing h by h".

Before writing the continuity conditions, it is to be noted that there are two kinds of
interfaces: one follows the layer I and the other layer 2. As it is assumed that there is perfect
bonding between the layers, the displacements Uj, the stress components T2i' the heat flux
component q2 and the temperature (J should be continuous across these interfaces, i,e. for the
interface following the layer 1:

I 2 I 2 I 2 I 2
Uj+ =Uj-; Ti; =T2i; q2+ =q2-; ~ = fT

Table 1. Properties of thorneI-carbon phenolic
composite

(13)

hi

cm
dyne - p.sec~

cm4

0.0032 0,0279 0,\03 0,897 1.47 1.42
x to'~ x IO'~

JJ.I

dyne/cm~ dyne/cm2

0,756 X 10'2 0,0662 x 10'~O,756 0.1\4
x 10'2 x 10'2
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for the interface following the layer 2:

2 I 2 I 2 I 2 I
Uj+ = Uj-; 'T2j ='T2j; q2+ = q2-; (f = fT.
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(14)

Using eqns (2)4, (5)6, (7)6 and (l0)3 the continuity conditions. eqns (13), (14) can be expressed in
« a a 0-

terms of face variables R;"', Si+, f7 and '//;" They are for the interface following the layer 1:

for the interface following the layer 2:

1 I I 1

'f/ - III ='IF + IIF (IS)

I 2 I 1

I//-I//=I/F+I/'-. (16)

a a II a a a

We note that the dependent variables ~= (ul', f~i, 1'~i' 1'~i' St', etc.) appearing in eqns OH12)
<)

and eqns (15), (16) are the functions of X~k>, i.e. their values depend on the positions of the
layers. Accordingly, eqns (lH12) and eqns (15), (16) form a discrete system of equations. In
order to obtain the solution using this discrete model, one should write eqns (1H12) in all layers
and take into account the continuity conditions, eqns (15), (16), at all interfaces. This kind of
procedure involves lengthy computations and appears to be of no practical use. To simplify the
analysis, in what follows we replace the discrete model by a continuous model by using a
smoothing operation.

a
To obtain the smoothed form of the field equations, eqns (lH12), we first replact ~kl in the

a a
arguments of the variables ~ appearing in these equations by Xl' After this smoothing, ~ is now

a
defined for all Xl but, it has physical meaning only at the midplanes X2 =X~kl. The smoothing
operation leaves eqns (lH12) unchanged because all of the field variables in these equations

a
are defined at the midplane of the same layer, i.e. at X2 = ~kl. In accordance with the
idealization implied by the smoothing operation, it is further assumed that both types of layers
exist simultaneously at every point of the continuum and accordingly, eqns (fH12) with a =1
and 2 hold at the same point X2.

With regard to the continuity conditions, eqns (15), (16), it is to be observed that the
variables appearing in these equations do not belong to the same layer. Therefore the smoothed
form of the continuity conditions will change and will be found through analysis. The analysis
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starts by referring to Fig. I and writing the continuity equations for the interface which follows
the layer L eqns (J 5\. explicitly as

2 2 I 1 I I 2 2

P(XI. X~I.I, X,. I) - PCtl. X~I.I, XJ, I) = P(x). X~I.I, XJ. t) + P(x). X~I.I. XJ. t). (\7)

where Pstands for either of the face variables (Si". 'ki", (Y, :f), i = 1- 3. It must be observed that
I I "
F' is defined at the midplane of the layer I (i.e. at x" = X~kl) while F' is defined at that of the,
layer 2 (i.e. at X2 = ~~k), To apply the smoothing operations to the continuity condition, eqn (\7)
will be written first in a form in which all of the variables in it are defined at a single point. To

this end a point M, in the interval (x I ~k), ~~k» with distances PIA and P2A from the midplanes of
the layers I and 2 respectively is chosen. where A=hi +h2 and Pa has the property PI + p" =I
(see Fig. I), The X2 coordinate of this jJoint is designated by X~k) in the figure. By taking into

1 2
account the relations X~kl = X~kl- PIA and X~k) = X~k) +P2A the continiuty condition. eqn (17),
now becomes

2 I 1 2

P(x~l.) +P2A) - P(x~k) - PIA) = F(X~k) - PIA) + F(X~k) +P2A), (8)

For simplicity the arguments XI. X} and t of P are omitted in eqn (18)
The reduced form of the continuity condition for the interface which follows the layer 2 can

be obtained from eqn (18) by replacing the layer index I by 2 and 2 by 1. It is

(9)

To obtain the smoothed forms of the continuity equations, it is assumed that the two types of
interfaces exist simultaneously at the same point of the continuum and X~k) in eqns (18), (19) is
replaced by x", Thus we obtain

2 I I 2

PIX" +P2A) - P(x" - PIA) = F(X2 - PIA) + F(x" +P2A)

I 2 " I
P(X2 +PIA) - P(x" - P2A) = F(X2 - P2A) + F(X2 +PIA).

When the first and second of eqns (20) are added and subtracted one gets

2 2 I I

P(x" +P2A) - P(X2 - P2A) + P(X2 +PIA) - P(X2 - PIA)

2 2 I I

= r(x2 +P2A) + F(X2 - P2A) + F(X2 +PIA) + F(x" - PIA)

2 2 I I

= F - (X2 +P2A) + P(X2 - P2A) - (P(X2 +PIA) + P(X2 - PIA))

Expanding the terms of eqns (21) in Taylor's series about the point X2 we finally obtain

2 I 2 I

s2P + SIP = C2F + clF

2 I 2 I

c2P - clP =S2F - sIF,

(20)

(21)

(22)
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where Sa and Ca are the operators defined by

So = (pa A)az+{Pa3~ial +... :::: sinh Ka

-1 + (pa A)2iJ 2+ - h
Ca - 2! 2 ••• - cos 1<"

1177

(23)

a a (l Q' (l

Equation (22) with P =(ST, Ri, rr, "l) respectively represent the smoothed form of the
continuity conditions for displacement, stress, heat flux and temperature. It must be noted that
these continuity conditions have an invariant form with regard to layer indices 1 and 2, i.e. they
remain unchanged when the index 1is replaced by 2 and the index 2 by l.

The derivation of the equations of an mth order continuum theory for a layered composite is
now completed. The governing equations are composed of the field equations, eqns (lHI2) and
the continuity conditions, eqns (22). They constitute (48(m +1) + 32) equations for

4 a a cr" Q"« a act:
the (48(m + 1)+ 32) unknown variables (ul', al', il', 1'j;, .,.;;, f~;, ql", q,", 112", 8",9", 0",
a 0: a a

st, R/", rr, ,,/'). It should be emphasized that the number of equations and unknowns can be
a a a a a Q

decreased through some eliminations. For example when the variables .,.1;, 1';;, f~, qt", £h", 42",
Q' a Q a

ill', IJ.{', ue, ,., it, ;y. are eliminated by using eqns (3), (4), (8), (9), (11) and (12)
a lit a a

the number of unknowns (ul', ff, S/:, l/l) and resulting governing equations reduces to
(8(m +I) + 16). Here it must be pointed out that the mth order theory constitutes a 2(m +1)
mode theory for principal waves, Le. it accommodates 2(m +1) dispersion curves in the spectra
for the waves propagating parallel and perpendicular to the layering.

Continuity conditions for the waves propagating parallel to the layering
.The continuity conditions, eqns (22), are general and hold for any kind of wave propagating

in an arbitrary direction. However, they assume a simpler form for waves (on the average
longitudinal or transverse) propagating parallel to the layering. For such waves the field
variables become independent of X2 and consequently, in the series, eqns (23), all of the terms
except the ones which do not involve the derivative of Xz vanish. Thus the operators reduce to
Sa :::: 0 and Ca :::: 1. With these forms of the operators the continuity conditions, eqns (22),
become

(24)

which are independent of the constants pI and P2.
To interpret eqns (24) physically the equation with F = S will be considered and the

a
interface win be assumed to follow the layer 1. In view of the expressions defining S/", eqn (5~,

eqns (24) then reduce to

I 2
- +Uj =U;. (25)

The first of eqns (25) describes the continuity of displacements at the interface and the second
implies that the actual displacement distribution is periodic with period 2£\. Equation (24) with
F =(R, Q, t/I) lead to the same conclusion with regard to 1'21, q2 and (J respectively. These
conditions are identical with those which are used in the exact analysis of waves propagating
parallel to the layering (see 12]).
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Continuity conditions for the wares propagating at a non-zero angle to layering
For such waves all of the terms in the series defining the operators. s". cu. eqns (23). ha.. e to

be considered and the continuity conditions become dependent on the constants PI. Pc. By
retaining certain numbers of the terms in the series various order approximate continuity
conditions can be obtained. For example. when the terms including K" and K"c are retained in
the series two different approximate forms for the continuity conditions can be obtained:

2 1 I 2

t..az(pzF,+ +PIFn = Fj - +F,-

2 I c 1

t..az(pzF,- - p IF,-) = F/ - F,+ F = (S, R, Q,I/I). (26)

and

(27)

F =(S, R, Q, 1/1).

In the study, eqns (26) and (27), will be referred to as first and second order continuity
conditions respectively.

The numerical analysis indicates that the match between the exact and approximate results
appears to be the best when PI = pz = 0.5 (which corresponds to taking the point M in Fig. 1 at
the midpoint of the vertical distance between the midplanes of two adjacent layers) and the
match improves as the order of the continuity condition is increased. This is illustrated in Fig. 2
which, in the absence of thermal effects, shows the dispersion curves for p .... Xz (i.e. for P
waves propagating in Xz direction) for thornel-carbon phenolic composite whose material
properties are given in Table 1 of the last section. In Fig. 2, wand k designate the angular
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Fig. 2. Dispersion curves for P -+;(2 <thornel-carbon phenolic) obtained using various orders of the theory
and continuity conditions and various values of PI and P2'
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frequency and the wave number respectively. In the figure the approximate spectra are
presented for six different cases:

(i) p, =P2 =0.5 and first order continuity condition;
(ii) PI =P2 =0.5 and second order continuity condition;
(iii) PI = P2 = 0.5 and fourth order continuity condition;
(iv) PI = n,; P2 =n2 and first order continuity condition;
(v) PI = nl; P2 = n2 and second order continuity condition;
(vi) PI = n,; P2 = n2 and fourth order continuity condition;

where n, and n2 are the volume fractions defined by nl = (hi/ii) and n2 = (h2/1i) with the
property nl + n2 = I. Choosing PI = nl and P2 =n2 corresponds to taking the point M at the
interface. In all six cases the second order theory is used. The details of the procedure used to
obtain the approximate spectral lines can be found in the next section. As seen from the figure,
the best fit between the exact and the approximate spectra is obtained for the third case, i.e.
when PI =P2 =0.5 and the fourth order continuity condition is used. The approximate spectrum
corresponding to this case predicts not only the stopping and passing bands but also describes
very well the periodic nature of the dispersion curves along the k axis.

In view of the findings established above, for the numerical analysis presented in the last
section, PI =P2 =0.5 is chosen; and due to its simple structure and its ability to predict both the
banded and periodic structure of spectra the second order continuity conditions are used.

DISPERSION RELATIONS
For the sake of brevity, we outline in this section the procedure for obtaining the

approximate disperions relation only for P -+ XI' The dispersion relations for the other waves,
namely, for SV-+x" SH-+x" P-+X2' SV-+X2 and the waves propagating obliquely to the
layering, can be found following a similar procedure. In the analysis the thermal effects are
neglected and the second (m = 2) and fourth (m =4) order theories are considered.

For the wave P -+XI which is on the average longitudinal, the actual longitudinal displace­
ment UI and transverse displacement U2 are respectively symmetric and antisymmetric with
respect to the midplanes of the layers. From the study of eqns (2) and (5), it follows that the
nonzero components of generalized displacement and face variables are

a Q Q_

Ul
ft

, U2ft , /lIft for even n

a a Q_

U2 ft , /lIft, U2ft for odd n (n =0- m; m =2, 4)

and

Accordingly, eqns (I), (3), (4), (II) and (24) reduce to
equations of motion:

a a a a

atT11 - f~1 +RIft =Pau.ft

where

a a a a
a1T12- f~2+ R2ft = PaUzR (n = 0- m; m = 2,4), (28)
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constitutive equations:

where

and
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a

;11 = (2/-La +Aa)al~14 +Aa(~4
- ii2

4
)

a a a

'Th = /-La(OIU2
1+51

1
- ii l

l
)

a a a 1 a
~0=~2=~4=_~­

2ha

a a

~I = /-L,,(OIU20 + 51°- aIO);

(29)

':1 _ I ~ "- 1+(2 + I )(5~ I '; I). ~ I - I (.-'Tn - I\"UIUI /-La 1\" 2 - U2 ,~ - 2h 2~
a

" a
equations for ii t and at:

(30)

(31)
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and

a

a

equations for the face variables: for second order theory

for fourth order theory

where

a h a h a

A +- aR- aa"­I -- I -- JoJ,!
2/La 2

continuity conditions:

1181

(32)

(33)

(34)

Equations (28H34) constitute the governing equations for P-+x.o To obtain the dispersion

SS Vol. 16, No. 12-1
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relation, equations of motion, eqns (28), are written in terms of generalized displacements by
using the constitutive equations, eqns (29) and (30). Substituting a trial solution of the form

A exp [j(knjXj - wt)) (35)

into the resulting equations and requiring that a nontrivial solution exists, the dispersion relation
is found. In eqn (35), j is the imaginary number; the nj are the components of the unit vector
defining the direction of propagation (for P -+ XI! rJ = (I, 0, 0»; A denotes the amplitude.

ASSESSMENT OF THE APPROXIMATE THEORY
To appraise the present approximate theory, the dispersion curves predicted by the

approximate theory are compared in this section with those derived from the exact theory.
The exact dispersion relations for various waves propagating in a layered composite are

already established in the literature and can be found in [2, 5]. For waves propagating normal to
layering, the exact analysis indicates that the dispersion curves described on the (w, k) plane are
periodic in k with the period 1T/t;,. and that there are frequency bands, called stopping bands, in
which no waves with real-valued wave numbers can propagate. The existence of the stopping

-- Exact theory
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Fig. 3. Approximate and exact spectra for P -+ XI (thornel-<:arbon phenolic composite).
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Fig. 4. Approximate and exact spectra for SV .... XI (lhornel-carbon phenolic composite).
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Table 2. Properties of Sun';, material

h, hl hi h, eJ. ~ t'J. ~ ~ ~
2h, 2h , n,=~nl=-r

Pl Pl III III III Il~

0.5 0.125 0.8 0.2 3 I 50 I 75 2.333
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Fig. 8. Approximate and exact spectra for waves propagating on the XIX2 plane obliquely with the
inclination angle a =75° from the XI axis.

bands for such waves implies that for p .... X2 and SV .... X2 a layered composite acts as a
mechanical filter allowing only certain frequencies to pass. This is experimentally verified in
[13]. The periodic and banded structure of the spectrum is not present for the other waves
propagating parallel and obliquely to the layering.

The approximate dispersion curves are obtained by using second and fourth order theories.
In the analysis we choose the distribution functions 4Jn as Legendre polynomials and accord·
ingly for the second order theory we take the values of 'Yk, e~b etc. from the table of Part I [12].
The exact dispersion curves for P .... x.. SV .... x" SH .... x.. P .... X2 and SV .... X2 are found
numerically by solving the exact frequency equations. The exact dispersion curves for the
inclined waves are taken from [14].

The comparison of the approximate and exact dispersion curves of waves propagating in XI

and X2 directions is made for thornel-carbon phenolic composites with the constituent proper­
ties given in Table I. This material was used by Whittier et al. [IS] in their experiments
involving the propagation of transient waves. The comparison for inclined waves is presented
for Sun's material which was used by Sun et al. in their study involving the development of a
first order effective stiffness theory for layered composites [3]. The properties of Sun's material
are listed in Table 2.

The numerical results are presented in Figs. 3-8. The comparisons are made on the (w, k)
plane rather than (e, k) plane (where e =wlk designetes the phase velocity). This preference is
made because the use of the (w, k) plane makes it possible to see the agreement between the
dispersion curves in the whole range of k's and all modes of propagation (since unlike the
fundamental modes, higher order branches of the spectrum have finite cut-off frequencies but
infinite cut-off phase velocities as k .... 0). In Fig. 8 the dispersion curves are shown in the (cd, k)
plane where Iii and k designate respectively the nondimensional wave number and frequency
defined by



1186 Y. MENGI el al.

Some general remarks regarding Figs. 3-8 showing the spectra for waves propagating in
various directions are now in order. First it must be observed that the match between the
exact and approximate dispersion curves is excellent. The cut-off phase velocities (i.e. phase
velocities at k = 0) of the fundamental branches predicted by the exact and the approximate
theories agree exactly. The match between the approximate and exact dispersion curves and the
cut-off frequencies (i.e. frequencies at k = 0) improves as the order of the theory increases. To
observe the latter point more clearly, Fig. 4 showing the spectrum for SV -+XI will be referred
to. The figure shows that the fundamental branch of the spectrum predicted by the second order
theory matches fairly well that of the exact theory. However, this agreement disappears for the
second branch. In fa{;t the approximate second branch lies far above the exact and has the
cut-off frequency of approximately 29.40 rad!IJ-sec compared to the exact cut-off frequency of
24 rad!IJ-sec. On the other hand, when the fourth order theory is used the approximate second
branch comes down to agree quite well with the exact and to have a cut-off frequency of
approximately equal to 24 radlf.Lsec.

Figures 2, 6 and 7 reveal that the c1pproximate theory predicts very well both the banded and
periodic structures of the spectra for waves propagating normal to the layering. From these
figures it can be concluded that an increase in the orders of the theory and continuity conditions
for P -+ X2 and SV -+ X2 increases respectively the lengths of the intervals 0 $ k $ k* and
Os w s w* on which the approximate theory is valid (the approximate theory is said to be valid
in a region of the (w, k) plane if the approximate dispersion curves approximates adequately the
exact dispersion curves in that region).
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